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Tutorial 3

Two-person zero-sum games

Definition 1. A game is called a two-person zero-sum game if

(i) Two players make their moves simultaneously.

(ii) One player wins what the the other player loses.

Strategic form

Definition 2. A strategic form of a two-person zero-sum game is a triple

(X, Y, π), where X, Y are the sets of strategies of Player I and Player II

respectively, and π : X × Y → R is the payoff function of Player I.

In this note, we only consider the case that both X and Y are finite, so that

we can identify the payoff function as a matrix.

Matrix game

Assume X = {1, · · · ,m}, Y = {1, · · · , n} are the sets of strategies of Player

I (the row player) and Player II (the column player) respectively. Let A ∈

Mm×n(R) be the payoff matrix, that is, ai,j denotes the payoff of the the row

player when the row player takes his strategy i and the column player takes

his strategy j.

Pure strategy: If A has a saddle point ak,l, that is

ak,l = min
1≤j≤n

ak,j = max
1≤i≤m

ai,l,

then the row player has an optimal pure strategy k and the column has an

optimal pure strategy l.

Mixed strategy: Let Pm denote the collection of p dimensional probability

vectors. We call each probability vector p ∈ Pm a mixed strategy for the



2

row player. Similarly, each q ∈ Pn is called a mixed strategy for the column

player.

Theorem 1. (Minimax Theorem). Let A be an m× n matrix. Then there

exist a number v ∈ R and two probability vectors p ∈ Pm, q ∈ Pn such that

(i) pAyT ≥ v for any y ∈ Pn.

(ii) xAqT ≤ v for any x ∈ Pm.

(iii) pAqT = v.

Remark: (1) The number v in the above theorem is unique, and we call it

the value of A, write v = v(A).

(2) In the above theorem, we call p an optimal (mixed) strategy for the row

player and q an optimal (mixed) strategy for the column player. In general,

p and q may not be unique.

(3) If v = 0, we say this game is fair.

(4) By solving a matrix game, we mean finding the value of matrix A and

optimal strategies for the two players.

Exercise 1. Show that the number v in the Minimax Theorem is unique.

Proof. Suppose two triples (v,p, q), (v′,p′, q′) both satisfy (i), (ii), (iii) in

the Minimax Theorem. Note that by using (i), (ii) several times, we have

v ≤ pAq′T ≤ v′ ≤ p′AqT ≤ v.

Exercise 2. Prove if AT = −A, then v(A) = 0.

Proof. Write v(A) = v. Assume p, q ∈ Pn are optimal strategies. Then
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by the Minimax Theorem, we have
pAyT ≥ v, ∀y ∈ Pn.

xAqT ≤ v, ∀x ∈ Pn.

pAqT = v.

Taking transpose in the above equations and applying the assumption that

AT = −A, we have 
yApT ≤ −v, ∀y ∈ Pn.

qAxT ≥ −v, ∀x ∈ Pn.

qApT = −v.

By the Minimax Theorem and the uniqueness of the value of A, we have

v = −v, hence v = 0.

Solving matrix games

Two useful principles: 1. Deleting the dominated rows and columns to

obtain a new matrix with lower dimensions. Recall that a row is dominated

if it is dominated (or say bounded) from above by another row, a column

is dominated if it is dominated from below by another column.

2. The principle of indifference. Assume p = (p1, · · · , pm) and q =

(q1, · · · , qn) are optimal strategies for Player I and Player II respectively.

Then

(i) for any k ∈ {1, · · · ,m} with pk > 0, we have
∑n

j=1 ak,jqj = v(A).

(ii) for any l ∈ {1, · · · , n} with ql > 0, we have
∑m

i=1 ai,lpi = v(A).

Exercise 3. In a Rock-Paper-Scissors game, the loser pays the winner an

amount of money which is equal to the total number of fingers shown by the

two players (for example, if Player I shows Scissors and Player II shows

Paper, then Player II should pay 7 dollars to Player I).
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(i) Find the value of the games.

(ii) Find optimal strategies for the two players.

Solution. The game is clearly a two-person zero-sum game and the game

matrix is given by

A =


R P S

R 0 −5 2

P 5 0 −7

S −2 7 0

.
(i) Since AT = −A, we have v(A) = 0.

(ii) Assume q = (q1, q2, q3) is an optimal strategy for Player I. Assume

q1, q2, q3 are all positive, then by the principle of indifference, we have

( p1 p2 p3 )


0 −5 2

5 0 −7

−2 7 0

 = ( 0 0 0 ).

Hence we have 

5p2 − 2p3 = 0

−5p1 + 7p3 = 0

2p1 − 7p2 = 0

p1 + p2 + p3 = 1

Solving the above equations, we get p1 = 1
2
, p2 = 1

7
, p3 = 5

14
. Similarly,

assume p = (p1, p2, p3) is an optimal strategy for Player II and p is strictly

positive, we have q = (1
2
, 1
7
, 5
14

). It is easy to check v = 0, p = q = (1
2
, 1
7
, 5
14

)

satisfy the the conclusion of the Minimax Theorem. Hence v = 0 is the

value of A and p = q = (1
2
, 1
7
, 5
14

) are optimal strategies.
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Exercise 4. Let

A =


0 −2 2 1 4

2 −1 3 0 5

3 4 −2 5 −3


(i) Find the reduced matrix of A by deleting dominated rows and columns.

(ii) Solve the two-person zero-sum game with game matrix A.

Solution. (i) Note that the fourth column is dominated by the second

column from below, by deleting the fourth column we obtain
0 −2 2 4

2 −1 3 5

3 4 −2 −3

 .

Now the first row in dominated by the second row from above, by deleting

the first row we obtain  2 −1 3 5

3 4 −2 −3

 .

There are no more dominated rows or columns, hence the above matrix is

the desired reduced matrix.

(ii) Let A′ denote the reduced matrix. For x ∈ [0, 1], we have

(x, 1− x)A′ = (2x+ 3(1− x),−x+ 4(1− x), 3x− 2(1− x), 5x− 3(1− x)).
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Draw the graph of



C1 : v = 2x+ 3(1− x) = 3− x

C2 : v = −x+ 4(1− x) = 4− 5x

C3 : v = 3x− 2(1− x) = 5x− 2

C5 : v = 5x− 3(1− x) = 8x− 3

.

The lower envelope is shown in Figure 1. SolvingC2 : v = 4− 5x

C3 : v = 5x− 2

,

we have v = 1 and x = 0.6. Hence v(A) = 1 and the optimal strategy for

the row player is (0, 0.6, 0.4). Solving

R2 : −y + 3(1− y) = 1

R3 : 4y − 2(1− y) = 1

,

we have y = 0.5. Hence the optimal strategy for the column player is

(0, 0.5, 0.5, 0, 0).
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